
Flash Translation Layer

User’s Guide and
Reference Manual
Support

High Performance
Real-Time Operating Systems

Copyright

Copyright (C) 2013 by SCIOPTA Systems AG. All rights reserved. No part of this publication may be re-
produced, transmitted, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, electronic, mechanical, optical, chemical or otherwise, without the prior
written permission of SCIOPTA Systems AG. The Software described in this document is licensed under
a software license agreement and maybe used only in accordance with the terms of this agreement.

Disclaimer

SCIOPTA Systems AG, makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability of fitness for any particular purpose. Fur-
ther, SCIOPTA Systems AG, reserves the right to revise this publication and to make changes from time
to time in the contents hereof without obligation to SCIOPTA Systems AG to notify any person of such
revision or changes.

Trademark

SCIOPTA is a registered trademark of SCIOPTA Systems AG.

Corporate Headquarters

SCIOPTA Systems AG
Fiechthagstrasse 19
4103 Bottmingen
Switzerland
Tel. +41 61 423 10 62
Fax +41 61 423 10 63
email: sales@sciopta.com
www.sciopta.com

Document No. S13243RL1

EU Headquarters

SCIOPTA Systems GmbH
Hauptstrasse 293
79576 Weil am Rhein
Germany
Tel. +49 7621 940 919 0
Fax +49 7621 940 919 19
email: sales@sciopta.com
www.sciopta.com

1 Table of Contents

1 Table of Contents

2 SCIOPTA Real-Time Operating System...5
2.1 Introduction..5
2.2 CPU Family...6
2.3 About This Manual..7

3 Introduction...9

4 Unified Block Index (UBI)..11
4.1 Introduction..11
4.2 Requirements for NAND flash driver..12
4.3 Using UBI..15
4.4 Power Loss Recovery..18
4.5 Configuration...19
4.6 Function interface reference..22
4.7 Errors reference..38

5 Flash Translation Layer (FTL)..41
5.1 Introduction..41
5.2 Using FTL..42
5.3 Power Loss Recovery..44
5.4 Configuration...45
5.5 Function interface reference..48
5.6 Errors reference..60

6 GDD-compatible FTL SCIOPTA driver...63
6.1 Introduction..63

7 Using NOR flash memories with FTL..65
7.1 Introduction..65

8 Manual versions..67
8.1 Manual version 1.0..67

9 Index..69

SCIOPTA – Flash Translation Layer Page 3

User's Guide and Reference Manual (V1.1)

2 SCIOPTA Real-Time Operating System

2 SCIOPTA Real-Time Operating System

2.1 Introduction

SCIOPTA is a high performance fully pre-emptive real-time operating system for hard real-time application
available for many target platforms.

Available modules:

• Pre-emptive Multitasking Real-Time Kernel

• SCIOPTA Memory Management System - Support for MMU/MPU

• Board Support Packages

• IPS - Internet Protocols (TCP/IP) including IPS Applications (Web Server, TFTP, FTP, DNS, DHCP,
Telnet and SMTP)

• FAT File System

• Flash File System, NOR and NAND

• Universal Serial Bus, USB Device

• Universal Serial Bus, USB Host

• DRUID - System Level Debugger including kernel awareness packages for source debuggers

• SCIOPTA PEG - Embedded GUI

• CONNECTOR - support for distributed multi-CPU systems

• SCAPI - SCIOPTA API for Windows or LINUX host

• SCSIM - SCIOPTA Simulator

SCIOPTA Real-Time Operating System contains design objects such as SCIOPTA modules, processes, mes-
sages and message pools. SCIOPTA is designed on a message based architecture allowing direct message
passing between processes. Messages are mainly used for interprocess communication and synchronization.
SCIOPTA messages are stored and maintained in memory pools. The memory pool manager is designed for
high performance and memory fragmentation is avoided. Processes can be grouped in SCIOPTA modules,
which allows you to design a very modular system. Modules can be static or created and killed during run-
time as a whole. SCIOPTA modules can be used to encapsulate whole system blocks (such as a communica-
tion stack) and protect them from other modules in the system.

The SCIOPTA Real-Time Kernel has a very high performance. The SCIOPTA architecture is specifically de-
signed to provide excellent real-time performance and small size. Internal data structures, memory manage-
ment, interprocess communication and time management are highly optimized. SCIOPTA Real-Time kernels
will also run on small single-chip devices without MMU.

SCIOPTA – Flash Translation Layer Page 5

User's Guide and Reference Manual (V1.1)

2 SCIOPTA Real-Time Operating System

2.2 CPU Family

SCIOPTA is delivered for a specific CPU Family such as: ARM®7/9, ARM®11, ARM® Cortex-M™,
ARM® Cortex™-R, ARM® Cortex™-A, Renesas RX, Freescale™ PowerPC, apm PowerPC, Freescale™
ColdFire and Marvell Xscale.

Please consult the latest version of the SCIOPTA Price List for the complete list.

Page 6 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

2 SCIOPTA Real-Time Operating System

2.3 About This Manual

The SCIOPTA Real-time Operating System is a message based RTOS and is therefore very well suited for
distributed multi-CPU systems.

The purpose of this Flash Translation Layer - User´s Guide and Reference Manual is to give all needed
information how to use the SCIOPTA Flash Translation Layer.

Please see also the other SCIOPTA manuals, mainly the SCIOPTA - Kernel, User’s Guide and Reference
Manual.

This manual includes only target processor independent information. All target processor related information
can be found in the SCIOPTA - Target Manual which is different for each SCIOPTA supported processor
family and includes:

• Installation information

• Getting started examples

• Description of the system configuration (SCONF tool)

• Information about the system building procedures

• Description of the board support packages (BSP)

• List of distributed files

• Release notes and version history

SCIOPTA – Flash Translation Layer Page 7

User's Guide and Reference Manual (V1.1)

3 Introduction

3 Introduction

NAND flash memory is an array of blocks of fixed sizes. Each block is divided into a number of physical
pages. Each physical page has got additional memory area, called the “spare area” which is available to the
user. In addition, the physical page may divided into smaller virtual pages if flash device supports them.

Physical page may be programmed only after entire block is erased. Each block erase causes the block to get
increasingly worn off. Each block has got erase count limit defined by the manufacturer, after which the data
may loose integrity. This happens if a physical page is reprogrammed very often, which means that the block
has to be erased each time.

The Unified Block Index (UBI) and Flash Translation Layer (FTL) together free the user application (usually
filesystem) from erasing blocks and reprogramming pages. Following diagram shows how the UBI and FTL
align with other part of the system.

FTL is designed to work with NAND flash devices, however it is possible to add an adaptation layer, which
emulates NAND flash memory on top of NOR flash memory. Refer to (7) for details about implementing ad-
aptation layer.

A logical page size of FTL layer is the same as physical page size of NAND flash device.

SCIOPTA – Flash Translation Layer Page 9

User's Guide and Reference Manual (V1.1)

 User application

 Filesystem (FAT, chanFs.c, ff.c)

 Flash Translation Layer (FTL, ftl.c)

 Unified Block Index (UBI, ubi.c)

 NAND Flash Memory Driver

 NAND Flash Memory

 NAND Flash Emulation Driver

 NOR Flash Memory Driver

 NOR Flash Memory

 GDD FTL driver (sciopta_ftl.c)

4 Unified Block Index (UBI)

4 Unified Block Index (UBI)

4.1 Introduction

NAND flash memory is an array of blocks of fixed sizes. Each block is divided into a number of physical
pages. Each physical page has got additional memory area, called the “spare area” which is available to the
user. In addition, the physical page may be divided into smaller virtual pages if flash device supports them.

Physical page can be programmed only after entire block is erased. Each block erase causes the block to get
increasingly worn off. Each block has got erase count limit defined by the manufacturer, after which the data
may loose integrity. This happens if a physical page gets reprogrammed very often, which means that the
block has to be erased each time.

The UBI (Unified Block Index) is a layer which provides an abstraction over NAND flash memory blocks. It
takes a series of N physical blocks of NAND flash memory and presents them to the upper layer as a series
of M logical blocks (where M < N). When upper layer erases a logical block, it gets replaced with another
block from the pool of free blocks. The UBI runs background periodic procedure, called wear-leveling. The
purpose of this procedure is to find the most worn off block in the free blocks pool and exchange it with the
least worn off block of the blocks currently in use. Executing wear-leveling procedure periodically, assures
that blocks are evenly worn-off, thus freeing the upper layer from worrying about wearing off blocks in the
NAND flash memory.

SCIOPTA – Flash Translation Layer Page 11

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.2 Requirements for NAND flash driver

4.2.1 Introduction

Every NAND flash driver must follow the following set of requirements to be compatible with UBI.

• Support for SDD_DEV_OPEN (read and write) message to open the device.

• Support for SDD_DEV_CLOSE message to close the device

• Support for SDD_DEV_READ message to read data area of flash. The driver must accept any read
size as long as it is aligned to virtual page size and read operation does not go beyond flash size.

• Support for SDD_DEV_WRITE message to write data area of flash. The driver must accept any
write size as long as it is aligned to virtual page size and write operation does not go beyond flash
size.

• Support for SDD_FILE_SEEK message to move current read/write position. The driver must accept
any offset as long as it is aligned to virtual page size and does not go beyond flash size.

• Support for SDD_DEV_IOCTL message to perform certain commands on flash device. Refer to
(4.2.3) for the list of ioctl commands, which must be supported.

4.2.2 Reading data and spare area

The driver must return error EFSBITFLIPPED, if there was a bit error when reading data or spare area and
the bit error was corrected by ECC. If EFSBITFLIPPED is returned, the ECC corrected data must also be
returned. For more informations about handling bitflips, refer to (4.3.9).

The driver must always return read data, even if ECC uncorrectable error has occurred.

4.2.3 Ioctl commands

Following ioctl commands must be supported by the flash device driver.

“Required size of arg” in following commands means that ioctl.outlineArg or ioctl.inlineArg must be at least
of the size specified.

4.2.3.1 Getting number of physical blocks

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_NUM_BLOCKS

Required size of arg: sizeof(uint32_t)

Description: This command returns back the number of physical blocks available in the flash device.

The value is stored in outlineArg/inlineArg as uint32_t type.

4.2.3.2 Getting physical block size

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_PHY_BLOCK_SIZE

Required size of arg: sizeof(uint32_t)

Description: This command returns back the physical block size of flash. For NAND flash this is a block size
excluding spare area. For NOR flash this entire block size (as there is no spare area).

The value is stored in outlineArg/inlineArg as uint32_t type.

Page 12 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.2.3.3 Getting logical block size

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_LOG_BLOCK_SIZE

Required size of arg: sizeof(uint32_t)

Description: This command returns back the logical block size of flash. For NAND flash this is a the same as
physical block size excluding spare area. For NOR flash this is a physical block size minus the
spare area created artificially by the driver to emulate NAND flash.

The value is stored in outlineArg/inlineArg as uint32_t type.

4.2.3.4 Getting physical page size

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_PHY_PAGE_SIZE

Required size of arg: sizeof(uint32_t)

Description: This command returns back the physical page size.

The value is stored in outlineArg/inlineArg as uint32_t type.

4.2.3.5 Getting virtual page size

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_VIRT_PAGE_SIZE

Required size of arg: sizeof(uint32_t)

Description: This command returns back the virtual page size.

The value is stored in outlineArg/inlineArg as uint32_t type.

4.2.3.6 Getting spare area size

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_SPARE_AREA_SIZE

Required size of arg: sizeof(uint32_t)

Description: This command returns back the spare area size available to the user.

The value is stored in outlineArg/inlineArg as uint32_t type.

4.2.3.7 Erasing physical block

Command: ioctl.cmd = NANDFLASH_IOCTL_ERASE_BLOCK

Required size of arg: sizeof(uint32_t)

Description: This command erases the physical block.

The zero-based physical block index should be passed to flash device driver in
outlineArg/inlineArg as uint32_t type.

4.2.3.8 Erasing physical block only if dirty (optional)

Command: ioctl.cmd = NANDFLASH_IOCTL_ERASE_BLOCK_IF_DIRTY

Required size of arg: sizeof(uint32_t)

Description: This command erases the physical block only if it is dirty (not contains only FF values).

The zero-based physical block index should be passed to flash device driver in
outlineArg/inlineArg as uint32_t type.

SCIOPTA – Flash Translation Layer Page 13

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

This ioctl command is optional. If this command will not be implemented, a driver must
return ENOTSUP error code.

4.2.3.9 Testing for bad physical block

Command: ioctl.cmd = NANDFLASH_IOCTL_CHECK_BLOCK_BAD

Required size of arg: sizeof(uint32_t)

Description: This command checks if physical blocks is marked as bad block.

The zero-based physical block index should be passed to flash device driver in
outlineArg/inlineArg as uint32_t type.

The bad block status is stored by device driver in outlineArg/inlineArg as uint32_t type.
If status is non-zero, the block is bad.

4.2.3.10 Marking physical block as bad

Command: ioctl.cmd = NANDFLASH_IOCTL_MARK_BLOCK_AS_BAD

Required size of arg: sizeof(uint32_t)

Description: This commands marks physical block as bad block.

The zero-based physical block index should be passed to flash device driver in
outlineArg/inlineArg as uint32_t type.

4.2.3.11 Testing all physical blocks for bad block marks

Command: ioctl.cmd = NANDFLASH_IOCTL_GET_BAD_BLOCK_TABLE

Required size of arg: Number of physical blocks divided by 8

Description: This command checks all physical blocks for bad block marks. The result is stored in
outlineArg/inlineArg. Each block occupies one bit. Block number 0 corresponds to LSB bit of
byte 0 of outlineArg/inlineArg. If bit is set, the block is marked bad.

4.2.3.12 Reading spare area

Command: ioctl.cmd = NANDFLASH_IOCTL_READ_SPARE

Required size of arg: Spare area size returned by ioctl command NANDFLASH_IOCTL_GET_SPARE_AREA_SIZE.

Description: This command reads spare area of physical page.

The physical page number is determined from the current read/write pointer, which can be
moved by using SDD_FILE_SEEK message.

It is enough for the pointer to point to any place within physical page. Moving it to the beginning
of physical page is not necessary.

4.2.3.13 Writing spare area

Command: ioctl.cmd = NANDFLASH_IOCTL_WRITE_SPARE

Required size of arg: Spare area size returned by ioctl command NANDFLASH_IOCTL_GET_SPARE_AREA_SIZE.

Description: This command writes spare area of physical page.

The physical page number is determined from the current read/write pointer, which can be
moved by using SDD_FILE_SEEK message.

Page 14 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

It is enough for the pointer to point to any place within physical page. Moving it to the beginning
of physical page is not necessary.

SCIOPTA – Flash Translation Layer Page 15

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.3 Using UBI

4.3.1 Formatting flash

NAND flash memory can be used by UBI after being formatted. To format flash memory use function
UBI_FormatOnly (4.6.4).

4.3.2 Initializing UBI

To initialize UBI with specific flash device, use function UBI_Initialize (4.6.13). This function checks if data
structures are correct and from this point on the flash memory can be used by the upper layer.

4.3.3 Getting flash parameters

To get certain parameters of flash memory available to the upper layer, use following functions:

• UBI_GetBlocksCount (4.6.5), for number of logical blocks available to the upper layer,

• UBI_GetPhyPagesPerBlock (4.6.8), for number of physical pages per logical block,

• UBI_GetPhyPageSize (4.6.6), for size of physical page,

• UBI_GetVirtPageSize (4.6.10), for size of virtual page,

• UBI_GetSpareSize (4.6.9), for size of spare area available to the user.

4.3.4 Running UBI background task

UBI background task is responsible for running wear-leveling procedure and exchanging blocks in case of
CRC errors caused by memory bitflips. Call function UBI_Background to execute these tasks.

One UBI_Background call services one most worn off block from the pool of free blocks, exchanging it
with the least worn block of the ones currently in use.

There are three possible strategies to call UBI_Background:

1. Call UBI_Background periodically. The wear-leveling will do its work only when it is needed.
Each call will also check for memory bitflips.

2. Keep calling UBI_Background until flash health indicators fall to the safe level. See 4.3.10 for de-
tails about checking flash health.

3. Call UBI_Background not more often than after every block erase.

Strategies 2 and 3 have a drawback, because they may miss bitflip events. Bitflips events occur when reading
flash memory. The UBI reacts to bitflip events in background task, but when power is off, the information
about these events is lost. Bitflip event may not happen again when particular page is read again, but it does
not mean, the data will not loose integrity in the future. For details about bitflips refer to (4.3.9).

4.3.5 Writing flash pages

To write flash physical page, use function UBI_WritePhyPage (4.6.18).

To write flash virtual page, use function UBI_WriteVirtPage (4.6.19).

Page 16 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.3.6 Reading flash pages

To read flash physical page, use function UBI_ReadPhyPage (4.6.14).

To read flash virtual page, use function UBI_ReadVirtPage (4.6.15).

4.3.7 Erasing logical blocks

To erase flash memory logical block, use function UBI_EraseBlock (4.6.3).

4.3.8 Enabling writes verification

To enable or disable flash writes verification, use function UBI_VerifyWritesEnable (4.6.17).

4.3.9 Bitflips

Depending on its implementation and capabilities, an underlying NAND driver can detect and correct bit
errors in data or spare area read. The UBI has got no knowledge about this mechanism, but it can handle
EFSBITFLIPPED status, if returned by the NAND driver when bit error is detected. Receiving EFSBITFLIPPED
from the driver is a signal for the UBI, that particular block may cause problems. Background task will exchange
this block with one from the pool of free blocks for its later erase and reuse. Refer to (4.3.4) for details about
running background task.

4.3.10 Getting and interpreting flash health

To get flash memory health status, use function UBI_Health (4.6.12).

typedef struct ubi_health_s {
 int warning;
 uint32_t rootBlks;
 uint32_t badRootBlks;
 uint32_t bitFlips;
 uint32_t dataBlks;
 uint32_t freeDataBlks;
 uint32_t badDataBlks;
 uint32_t eraseCountMax;
 uint32_t eraseCountAvg;
} ubi_health_t;

warning Flash health warning

If !=0, indicates that either number of good root blocks or number of free data
blocks fell below safe level and if next block becomes bad, the flash will no
longer be usable for writing. It is recommended to backup data in this case and
re-format flash.

rootBlks Root blocks total count

Indicates total number of blocks allocated for UBI root structures (good and bad
blocks). Refer to (4.5.5.1) for informations about configuring the number of root
blocks.

badRootBlks Bad root blocks count

Indicates how many of blocks allocated for UBI root structures are bad.

bitFlips Detected bitflips count

Indicates how many bitflips events occurred since formatting. Refer to (4.3.9) for
informations about bitflips.

SCIOPTA – Flash Translation Layer Page 17

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

dataBlks Data blocks count

Indicates the number of logical data blocks available to the upper layer.

freeDataBlks Free data blocks count

Indicates the number of free data blocks. Refer to (4.5.5.1) for informations
about configuring the number of free data blocks.

badDataBlks Bad data blocks count

Indicates the number of bad data blocks.

eraseCountMax Maximum erase count

Indicates how many times the most worn off block has been erased.

eraseCountAvg Average erase count

Indicates average wear off of all blocks excluding root blocks.

Page 18 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.4 Power Loss Recovery

UBI deals with power fails by attempting to write the same data structures as before the power fail. This is
done to make the UBI structures integral. The underlying flash memory should allow writing the same data,
and UBI verifies written data. However unlikely it is, if UBI fails to write data in Power Loss Recovery pro-
cedure, it will switch to read-only mode, allowing upper layers to access the data stored in flash.

SCIOPTA – Flash Translation Layer Page 19

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.5 Configuration

4.5.1 Introduction

The UBI uses header “ubi_cfg.h” to read the user configuration. A template configuration header can be
found in following location:

<installation_folder>\sciopta\<version>\include\ftl\ubi_cfg_template.h

4.5.2 Configuring UBI for flash device

The UBI divides flash memory into three main areas:

• Boot area – reserved blocks, which UBI will not modify in any way. These blocks can be used by
user for storing target's boot data. Refer to (4.5.5.1) for informations about configuring the size of
boot area.

• Root area – these blocks are used by the UBI to store this part of its structures which changes least
frequently. This means they will be rarely erased and thus least exposed to wearing off. Refer to
(4.5.5.1) for informations about configuring the size of root area.

• Data area (catalogue, directories, data blocks and free blocks) – these blocks will be frequently
erased. When UBI formats this area, it checks first which blocks are bad, and these blocks will not
be used. Blocks which are left are divided initially in the following order: catalogue, directory
blocks, each followed by data blocks which belong to it, and finally free blocks.

When configuring UBI for particular flash device, user must choose between number of blocks available to
the upper layer and lifespan of a flash memory. If flash memory will be frequently written it is highly recom-
mended to increase the size of root area (4.5.5.1) and percentage of free blocks in data area (4.5.5.1) at the
cost of flash size available to the upper layer.

4.5.2.1 Choosing root area size

For the root area the size does not need to be too large to assure it's long lifespan. Assuming that each block
contains N physical pages, one root block will be erased after every N * N of block erase requests from the
upper layer. Following formula is an approximation of how many times (on average) each data block will be
erased if each root block was erased once.

~ (root_area_size * N * N) / M,

where: N – number of physical pages in block, M – number of blocks in flash

For example for flash memory with 512 blocks, each containing 64 physical pages, all root blocks will be
erased once whilst all other blocks will be erased approximately 24 times.

4.5.2.2 Choosing free blocks percentage

It is required to reserve more than 3 blocks as free blocks for the UBI. The number of free blocks is chosen as
a percentage of available blocks. The minimal percentage value is 1%, which may result in 4 or more free
blocks, depending on the size of flash memory. If not, the percentage must be increased.

If any of blocks other than root blocks becomes bad, number of free blocks may, at some point, fall down
from 4 to 3. The UBI_Health function (4.6.12) will start returning health warning status. This is because if
any other block becomes bad again, the UBI layer will not be writeable anymore. User should check health
status periodically and act accordingly when health warning is reported.

Page 20 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

Because of the reason described above, it is highly recommended to choose a number of free blocks bigger
than minimal, to get longer lifespan before another flash memory format is required.

4.5.3 Configuring for minimal RAM memory usage

To configure UBI for minimal memory usage, set following setting:

UBI_DIR_CACHE_SIZE = 1 (refer to 4.5.5.4)

4.5.4 Configuring for maximum performance

To configure UBI for maximum performance, set following setting:

UBI_DIR_CACHE_SIZE = 0xFFFFFFFF (refer to 4.5.5.4)

4.5.5 Options reference

4.5.5.1 Flash memory layout

These options specify how the flash device is divided to Boot Area, Root Area and Data Area.

Option name: UBI_AREA_BOOT_SIZE

Valid values: 0, 1, 2, ...

Description: This option specifies how many physical blocks starting from the beginning of flash device are re-
served and should not be used by UBI.

Changing this option requires reformatting the flash memory to create new FTL structures.

Option name: UBI_AREA_ROOT_SIZE

Valid values: 3, 4, 5, 6, ...

Description: This option specifies how many physical blocks after Boot Area (option UBI_AREA_BOOT_SIZE)
should be used by UBI to store it's structures.

During the usage of UBI, blocks in this area may be marked bad due to the erase/write errors. If num-
ber of good blocks in this area falls down to 2, the UBI_Health function (4.6.12) will return a health
warning. Refer to (4.3.10) for informations about getting and interpreting flash health.

Bad blocks which are already in the specified area will decrease the value specified by this option. If
number of remaining good blocks is less than 3, the flash device cannot be used by UBI and error will
be returned when using UBI_FormatOnly function (4.6.4). In this case increasing the value of this op-
tion should allocate at least 3 good blocks.

Changing this option requires reformatting the flash memory to create new FTL structures.

Option name: UBI_FREE_BLOCKS_PERCENTAGE

Valid values: Any number in range 1 to 99, inclusive.

Description: This option specifies a percentage of data blocks, which should form a pool of free blocks.

Changing this option requires reformatting the flash memory to create new FTL structures.

4.5.5.2 Block erasing policy

SCIOPTA – Flash Translation Layer Page 21

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

Option name: UBI_ERASE_BLOCK_ONLY_IF_DIRTY

Valid values: 0 – Always erase
1 – Erase only if block is dirty (does not contain only FFs)

Description: This option enables optional feature of flash drivers, which allows to speed up block erasing when
formatting flash memory. The feature of the flash driver first checks whether a block contains only FF
values. If yes, block is not erased.

WARNING:

This feature may be dangerous if block of NAND flash went bad, but was not yet flagged as a bad one.
Without erasing, UBI will not know that such block is bad.

In case of NOR memory a block erasing may end up with error, which is an indication for UBI to treat
such block as a bad one.

In both cases (NAND and NOR) turning this option on may lead to later data corruption.

4.5.5.3 Wear-leveling

Option name: UBI_WL_THRESHOLD

Valid values: 1, 2, 3, …, 0xFFFFFFFF

Description: This option selects the threshold of when the wear-leveling procedure should exchange the most worn
off block with the least worn off block. The exchange happens if difference between erase count for
those blocks is larger then UBI_WL_THRESHOLD.

Option name: UBI_ERASE_COUNT_MAX

Valid values: 1000, 1001, 1002, …, 0xFFFFFFFF

Description: This option sets the maximum erase count for each physical block.
The UBI increases the erase count whenever a physical block is erased. If erase count of a physical
block reaches this limit, the block is removed from free blocks pool and will no longer be used.

4.5.5.4 Caching

Option name: UBI_DIR_CACHE_SIZE

Valid values: 1, 2, 3, …, 0xFFFFFFFF

Description: This option selects the size of cache for UBI structures. The cache size is in units of physical page
size. The cache actually allocated is never bigger than required. Thus setting this option to
0xFFFFFFFF assures, that UBI works with maximum performance, because all structures are cached.

4.5.5.5 Read-only

Option name: UBI_READ_ONLY

Valid values: 0 – Read only disabled
1 – Read only enabled

Description: If this option is enabled, the UBI is compiled in read-only mode (decreases code footprint).

4.5.5.6 Support for virtual pages

Option name: UBI_SUPPORT_FLASH_VIRTUAL_PAGES

Valid values: 0 – Support for virtual pages disabled
1 – Support for virtual pages enabled

Description: If this option is enabled, the UBI is compiled with support for flash device virtual pages.

Page 22 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.5.5.7 Trap interface

Option name: UBI_USE_TRAP_INTERFACE

Valid values: 0 – Disabled
1 – Enabled

Description: If this option is enabled, Sciopta trap interface will be used by UBI sources.

4.5.5.8 Debug log

Option name: UBI_LOG_LEVEL

Valid values: 0 – log is disabled
1 – only error messages are printed
2 – diagnostic and error messages are printed

Description: This option enables sending UBI log messages to Log Deamon.

SCIOPTA – Flash Translation Layer Page 23

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6 Function interface reference

4.6.1 UBI_Background

This function runs UBI background tasks. Refer to (4.3.4) for detailed informations about calling this func-
tion.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.1.1 Syntax

ubi_error_t UBI_Background(
 ubi_t *ubi
);

4.6.1.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

4.6.1.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 24 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.2 UBI_Deinitialize

This function deinitializes the UBI by closing NAND flash device and releasing all allocated memory.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.2.1 Syntax

ubi_error_t UBI_Deinitialize(
 ubi_t *ubi
);

4.6.2.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

4.6.2.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 25

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.3 UBI_EraseBlock

This function erases a logical block.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.3.1 Syntax

ubi_error_t UBI_EraseBlock(
 ubi_t *ubi,
 uint32_t block
);

4.6.3.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index to erase.

4.6.3.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 26 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.4 UBI_FormatOnly

This function opens a NAND flash device, formats it and closes the device.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.4.1 Syntax

ubi_error_t UBI_FormatOnly(
 ubi_t *ubi,
 const char *device_name
);

4.6.4.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

device_name NAND flash device name

Specifies NAND flash device name as it is registered to Device Manager.

4.6.4.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 27

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.5 UBI_GetBlocksCount

This function returns the number of logical blocks available.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.5.1 Syntax

ubi_error_t UBI_GetBlocksCount(
 ubi_t *ubi,
 uint32_t *blocks_count
);

4.6.5.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

blocks_count Logical blocks count

Returned value is a number of logical blocks available to the upper layer.

4.6.5.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 28 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.6 UBI_GetPhyPageSize

This function returns the size of a physical page.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.6.1 Syntax

ubi_error_t UBI_GetPhyPageSize(
 ubi_t *ubi,
 uint32_t *phy_page_size
);

4.6.6.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

phy_page_size Physical page size

Returned value is a physical page size in bytes.

4.6.6.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 29

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.7 UBI_GetPhyPageStatus

This function returns physical page status (only data area).

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.7.1 Syntax

ubi_error_t UBI_GetPhyPageStatus(
 const ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 ubi_content_state_t *state
);

4.6.7.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index where physical page is located.

page Physical page index

Specifies zero-based physical page index within logical block.

state State of physical page

Pointer to ubi_content_state_t enumeration.

4.6.7.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page status (data area) is returned through parameter state:

• UBI_CONTENT_STATE_CLEAN – data is not programmed (contains only FFs)

• UBI_CONTENT_STATE_DAMAGED – data area is damaged

• UBI_CONTENT_STATE_PROGRAMMED – data area is correctly programmed

Page 30 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.8 UBI_GetPhyPagesPerBlock

This function returns the number of physical pages per logical block.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.8.1 Syntax

ubi_error_t UBI_GetPhyPagesPerBlock(
 ubi_t *ubi,
 uint32_t *phy_pages_per_block
);

4.6.8.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

phy_pages_per_block Physical pages per block

Returned value is a number of physical pages per logical block.

4.6.8.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 31

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.9 UBI_GetSpareSize

This function returns the size of spare area available to the user.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.9.1 Syntax

ubi_error_t UBI_GetSpareSize(
 ubi_t *ubi,
 uint32_t *spare_size
);

4.6.9.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

spare_size Spare size

Returned value is a spare area size available to the user.

4.6.9.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 32 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.10 UBI_GetVirtPageSize

This function returns the size of a virtual page.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.10.1 Syntax

uint32_t UBI_GetVirtPageSize(
 ubi_t *ubi,
 uint32_t *virt_page_size
);

4.6.10.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

virt_page_size Virtual page size

Returned value is a virtual page size in bytes.

4.6.10.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 33

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.11 UBI_GetVirtPageStatus

This function returns virtual page status.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.11.1 Syntax

ubi_error_t UBI_GetVirtPageStatus(
 const ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 ubi_content_state_t *state
);

4.6.11.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index where physical page is located.

page Virtual page index

Specifies zero-based virtual page index within logical block.

state State of virtual page

Pointer to ubi_content_state_t enumeration.

4.6.11.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page status is returned through parameter state:

• UBI_CONTENT_STATE_CLEAN – data is not programmed (contains only FFs)

• UBI_CONTENT_STATE_DAMAGED – data area is damaged

• UBI_CONTENT_STATE_PROGRAMMED – data area is correctly programmed

Page 34 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.12 UBI_Health

This function is used to retrieve current flash health state. Refer to (4.3.10) for informations about interpreting
flash health.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.12.1 Syntax

ubi_error_t UBI_Health(
 ubi_t *ubi,
 ubi_health_t *health
);

4.6.12.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

health Pointer to the ubi_health_t structure

UBI_Health stores health informations to the structure pointed by this parameter.

4.6.12.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 35

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.13 UBI_Initialize

This function is used to initialize the UBI. After opening a NAND flash device, the function reads and checks
UBI structures in the flash and allocates all the necessary buffers.

4.6.13.1 Syntax

If UBI is compiled in read-only mode (4.5.5.5):

ubi_error_t UBI_Initialize(
 ubi_t *ubi,
 const char *device_name
);

If UBI is compiled in non read-only mode (4.5.5.5):

ubi_error_t UBI_Initialize(
 ubi_t *ubi,
 const char *device_name,
 int readonly
);

4.6.13.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

device_name NAND flash device name

Specifies NAND flash device name as it is registered to Device Manager.

readonly Read-only mode

If != 0, UBI is initialized in read-only mode.

4.6.13.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 36 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.14 UBI_ReadPhyPage

This function is used to read data and/or spare area of a physical page.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.14.1 Syntax

ubi_error_t UBI_ReadPhyPage(
 ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 uint8_t *data,
 uint8_t *spare,
 uint32_t spare_size,
 int read_twice
);

4.6.14.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index to read data from.

page Physical page index

Specifies zero-based physical page index within logical block to read data from.

data Data buffer

Specifies buffer to store read data to. The function assumes that the buffer is
large enough to fit one physical page. Use function UBI_GetPhyPageSize
(4.6.6) to get size of physical page.

If data = NULL, the data area will not be read.

spare Spare buffer

Specifies buffer to store read spare area to.

If spare = NULL, the spare area will not be read.

spare_size Spare area size to read

Specifies spare area size to read. The spare buffer must be large enough to fit
spare_size bytes.

read_twice Read data/spare twice

If non-zero, the function will read data and/or spare location twice to make sure
read bits are stable. This is particularly important for areas of flash which were
being written when power loss occurred. If two reads give the same result (either
success or error), function returns with this result. If results of two subsequent
reads are different, function will read the same location third time and result of
this third read will be returned.

4.6.14.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

SCIOPTA – Flash Translation Layer Page 37

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 38 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.15 UBI_ReadVirtPage

This function is used to read virtual page data.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.15.1 Syntax

ubi_error_t UBI_ReadVirtPage(
 ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 uint8_t *data,
 int read_twice
);

4.6.15.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index to read data from.

page Virtual page index

Specifies zero-based virtual page index within logical block to read data from.

data Data buffer

Specifies buffer to store read data to. The function assumes that the buffer is
large enough to fit one virtual page. Use function UBI_GetVirtPageSize
(4.6.10) to get size of virtual page.

read_twice Read data twice

If non-zero, the function will read data location twice to make sure read bits are
stable. This is particularly important for areas of flash which were being written
when power loss occurred. If two reads give the same result (either success or er-
ror), function returns with this result. If results of two subsequent reads are differ-
ent, function will read the same location third time and result of this third read
will be returned.

4.6.15.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 39

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.16 UBI_VerifyPhyPage

This function verifies if content of physical page matches supplied data and/or spare buffer content.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.16.1 Syntax

ubi_error_t UBI_VerifyPhyPage(
 const ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 const void *data,
 const void *spare,
 uint32_t spare_size
);

4.6.16.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index where physical page is located.

page Physical page index

Specifies zero-based physical page index within logical block.

data Data buffer

Specifies buffer with data to be used for verification. The function assumes that
the buffer is of size equal to one physical page. Use function
UBI_GetPhyPageSize (4.6.6) to get size of physical page.

spare Spare buffer

Specifies buffer with spare area content to verify against.

spare_size Spare area size to verify

Specifies number of bytes of spare area to be verified.

4.6.16.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 40 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.17 UBI_VerifyWritesEnable

This function enables or disables flash writes verification. By default the verification is on. If verification is
on, after every flash write, the UBI reads back the written data and verifies if data matches.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.17.1 Syntax

ubi_error_t UBI_VerifyWritesEnable(
 ubi_t *ubi,
 int enable
);

4.6.17.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

enable Enable writes verification

If non-zero, writes verification is enabled.

4.6.17.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 41

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.18 UBI_WritePhyPage

This function is used to write data and/or spare area of a physical page.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.18.1 Syntax

ubi_error_t UBI_WritePhyPage(
 ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 int write_spare_first,
 int ro_on_error,
 const uint8_t *data,
 const uint8_t *spare,
 uint32_t spare_size
);

4.6.18.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index to write data to.

page Physical page index

Specifies zero-based physical page index within logical block to write data to.

write_spare_first Write spare data first

If non-zero, the spare data will be written to spare area before writing normal
data.

ro_on_error Read-only on error

If error occurs when writing physical page, switch UBI to read-only mode.

data Data buffer

Specifies buffer with data to be written. The function assumes that the buffer is of
size equal to at least one physical page. Use function UBI_GetPhyPageSize
(4.6.6) to get size of physical page.

spare Spare buffer

Specifies buffer with data to write to spare area.

spare_size Spare area size to write

Specifies number of bytes to write to spare area.

4.6.18.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

Page 42 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.6.19 UBI_WriteVirtPage

This function is used to write virtual page data.

UBI_Initialize (4.6.13) must be successfully called prior to calling this function.

4.6.19.1 Syntax

ubi_error_t UBI_WriteVirtPage(
 ubi_t *ubi,
 uint32_t block,
 uint32_t page,
 const uint8_t *data
);

4.6.19.2 Parameters

ubi UBI handle

Pointer to the structure holding UBI state.

block Logical block index

Specifies zero-based logical block index to write data to.

page Virtual page index

Specifies zero-based virtual page index within logical block to write data to.

data Data buffer

Specifies buffer with data to be written. The function assumes that the buffer is of
size equal to at least one virtual page. Use function UBI_GetVirtPageSize
(4.6.10) to get size of virtual page.

4.6.19.3 Return value

If the function succeeds the return value is UBI_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (4.7) for error reference.

SCIOPTA – Flash Translation Layer Page 43

User's Guide and Reference Manual (V1.1)

4 Unified Block Index (UBI)

4.7 Errors reference

For list of possible errors refer to header file:

<installation_folder>\sciopta\<version>\include\ftl\ubi.h

Page 44 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5 Flash Translation Layer (FTL)

5.1 Introduction

The FTL (Flash Translation Layer) is a layer which provides an abstraction over NAND flash memory pages.
The FTL layer is located between user application (usually a filesystem) and UBI layer (4.1).

A flash page cannot be reprogrammed without first erasing entire block. The FTL takes care about erasing the
blocks and keeps the translation tables, which map page numbers used by user application to page numbers in
flash memory. The process of erasing blocks and reprogramming pages is transparent to the user application.

The UBI gives access to N physical pages (number of blocks times number of physical pages per block), and
FTL gives access to M logical pages, where (M < N). Logical page may be divided into virtual pages (if
memory device supports them).

SCIOPTA – Flash Translation Layer Page 45

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.2 Using FTL

5.2.1 Formatting flash

NAND flash memory can be used by FTL after being formatted. To format flash memory use function
FTL_FormatOnly (5.5.3).

5.2.2 Initializing FTL

To initialize FTL with specific flash device, use function FTL_Initialize (5.5.5). This function checks if data
structures are correct and from this point on the flash memory can be used by the upper layer.

5.2.3 Running FTL background task

The only FTL background task's role is to call UBI_Background function (4.6.1). Refer to (4.3.4) for
informations about how UBI_Background function should be used, and apply the same rules to calling
FTL_Background function (5.5.1).

5.2.4 Writing flash pages

To write flash logical page, use function FTL_WriteLog (5.5.10).

To write flash virtual page, use function FTL_WriteVirt (5.5.11).

5.2.5 Reading flash pages

To read flash logical page, use function FTL_ReadLog (5.5.6).

To read flash virtual page, use function FTL_ReadVirt (5.5.7).

5.2.6 Trimming flash pages

In order to keep the highest write performance possible, it is required to mark pages as no longer needed. If
page is trimmed, its content will not be copied by internal FTL engine when performing certain operations,
such as reclaiming new data blocks for data writes.

To trim a range of logical pages, use function FTL_Trim (5.5.8).

5.2.7 Enabling writes verification

To enable or disable flash writes verification, use function FTL_VerifyWritesEnable (5.5.9).

5.2.8 Getting and interpreting flash health

To get flash memory health status, use function FTL_Health (5.5.4).

typedef struct ftl_health_s {
 ubi_health_t ubi;
 uint32_t totalPages;
 uint32_t usedPages;
} ftl_health_t;

ubi UBI layer health status

Contains UBI layer health status. Refer to (4.3.10) for details about interpreting

Page 46 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

UBI layer flash health.

totalPages Number of logical pages

Indicates a number of logical pages available to the upper layer.

usedPages Number of pages being used

Indicates a number of pages being in use. Pages which are not in use are read if
they contained zeros.

SCIOPTA – Flash Translation Layer Page 47

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.3 Power Loss Recovery

FTL deals with power fails by attempting to write the same data structures as before the power fail. This is
done to make the FTL structures integral. The underlying flash memory should allow writing the same data,
and FTL verifies written data. However unlikely it is, if FTL fails to write data in Power Loss Recovery pro-
cedure, it will switch to read-only mode, allowing upper layers to access the data stored in flash.

Power Loss Recovery assures that FTL_WriteLog (5.5.10) and FTL_WriteVirt (5.5.11) functions are atomic.
This means that either an old or new data is available in logical/virtual page after power loss.

Power Loss Recovery assures that FTL_Trim functions will not damage FTL structures if power is lost, how-
ever, it is not guaranteed that all pages will be trimmed after power is back.

Page 48 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.4 Configuration

5.4.1 Introduction

The FTL uses header “ftl_cfg.h” to read the user configuration. A template configuration header can be found
in following location:

<installation_folder>\sciopta\<version>\include\ftl\ftl_cfg_template.h

5.4.2 Configuring FTL for flash device

FTL layer can be configured in many different ways, depending on the requirements. In general the configura-
tion target can be chosen between performance, RAM usage and amount of flash memory available to the up-
per layer. Following factors influence the FTL performance:

• writing and reading pages sequentially or randomly (sequential is faster)

• writing logical pages or virtual pages (writing logical pages is faster, unless virtual page was not
written before)

• using FTL_Trim (5.5.8) (trimmed logical pages are written faster, trimming unused pages improves
overall FTL performance)

Following options influence FTL performance:

• FTL_ADDITIONAL_FREE_BLOCKS_PERCENTAGE (5.4.5.2) - bigger percentage means faster
writes

• FTL_USE_VPMAP_CACHE (5.4.5.3) - bigger value improves write and read performance

• FTL_USE_DIRTY_CACHE (5.4.5.3) - bigger value improves only write performance

5.4.3 Configuring for minimal RAM memory usage

To configure UBI for minimal memory usage, set following setting:

FTL_USE_VPMAP_CACHE = 0 (refer to 5.4.5.3)

FTL_USE_DIRTY_CACHE = 0 (refer to 5.4.5.3)

5.4.4 Configuring for maximum performance

To configure UBI for maximum performance, set following setting:

FTL_USE_VPMAP_CACHE = 0xFFFFFFFF (refer to 5.4.5.3)

FTL_USE_DIRTY_CACHE = 0xFFFFFFFF (refer to 5.4.5.3)

5.4.5 Options reference

5.4.5.1 Flash device identification

Option name: FTL_MEMORY_DEVICE_NAME

Valid values: Flash device driver name as registered into Device Manager

Description: The FTL uses this name to get flash device driver object from Device Manager.

SCIOPTA – Flash Translation Layer Page 49

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.4.5.2 Flash memory layout

Option name: FTL_ADDITIONAL_FREE_BLOCKS_PERCENTAGE

Valid values: 0, 1, 2, …, 99

Description: The more blocks are assigned to be free blocks, the better the write performance (but less the avail-
able flash memory size).

Changing this option requires reformatting the flash memory to create new FTL structures.

5.4.5.3 Caching

Option name: FTL_USE_VPMAP_CACHE

Valid values: 0, 1, 2, 3, …, 0xFFFFFFFF

Description: This option selects the size of cache for FTL VPMAP structures (translations between logical pages
and physical pages in the flash memory). The cache size is in units of physical/logical page size. The
cache actually allocated is never bigger than required. Thus setting this option to 0xFFFFFFFF as-
sures, that FTL works with maximum performance, because all VPMAP structures are cached.

Option name: FTL_USE_DIRTY_CACHE

Valid values: 0, 1, 2, 3, …, 0xFFFFFFFF

Description: This option selects the size of cache for FTL blocks dirtiness tracking structures (dirtiness of a block in-
creases when programmed page is no longer valid). The cache size is in units of physical/logical page
size. The cache actually allocated is never bigger than required. Thus setting this option to
0xFFFFFFFF assures, that FTL works with maximum performance, because all DIRTY structures are
cached.

5.4.5.4 Read-only

Option name: FTL_READ_ONLY

Valid values: 0 – Read only disabled
1 – Read only enabled

Description: If this option is enabled, the FTL is compiled in read-only mode (decreases code footprint).

5.4.5.5 Support for virtual pages

Option name: FTL_SUPPORT_FLASH_VIRTUAL_PAGES

Valid values: 0 – Support for virtual pages disabled
1 – Support for virtual pages enabled

Description: If this option is enabled, the FTL is compiled with support for flash device virtual pages.

Changing this option requires reformatting the flash memory to create new FTL structures.

5.4.5.6 Trap interface

Option name: FTL_USE_TRAP_INTERFACE

Valid values: 0 – Disabled
1 – Enabled

Description: If this option is enabled, Sciopta trap interface will be used by FTL sources.

Page 50 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.4.5.7 Support for more than 128 physical pages per block

Option name: FTL_SUPPORT_MORE_THAN_128_PAGES_PER_BLOCK

Valid values: 0 – Support for more than 128 physical pages per block disabled
1 – Support for more than 128 physical pages per block enabled

Description: If this option is enabled, the FTL is compiled with support for more than 128 physical pages per block.

Changing this option requires reformatting the flash memory to create new FTL structures.

5.4.5.8 Debug log

Option name: FTL_LOG_LEVEL

Valid values: 0 – log is disabled
1 – only error messages are printed
2 – diagnostic and error messages are printed

Description: This option enables sending FTL log messages to Log Deamon.

SCIOPTA – Flash Translation Layer Page 51

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5 Function interface reference

5.5.1 FTL_Background

This function runs FTL background tasks. Refer to (5.2.3) for detailed informations about calling this func-
tion.

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.1.1 Syntax

ftl_error_t FTL_Background(
 ftl_t *ftl
);

5.5.1.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

5.5.1.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

Page 52 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.2 FTL_Deinitialize

This function deinitializes the FTL by closing NAND flash device and releasing all allocated memory.

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.2.1 Syntax

ftl_error_t FTL_Deinitialize(
 ftl_t *ftl
);

5.5.2.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

5.5.2.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 53

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.3 FTL_FormatOnly

This function formats flash device. First, the UBI_FormatOnly (4.6.4) function is called to create UBI struc-
tures. Then FTL creates its necessary structures in the flash.

5.5.3.1 Syntax

ftl_error_t FTL_FormatOnly(
 ftl_t *ftl,
 const char *device_name
);

5.5.3.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

device_name NAND flash device name

Specifies NAND flash device name as it is registered to Device Manager.

5.5.3.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

Page 54 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.4 FTL_Health

This function is used to retrieve current flash health state. Refer to (5.2.8) for informations about interpreting
flash health.

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.4.1 Syntax

ftl_error_t FTL_Health(
 ftl_t *ftl,
 ftl_health_t *health
);

5.5.4.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

health Pointer to the ftl_health_t structure

FTL_Health stores health informations to the structure pointed by this parameter.

5.5.4.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 55

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.5 FTL_Initialize

This function is used to initialize the FTL. The function first initializes the UBI layer (4.6.13) and if it was
successful, the function reads and checks FTL structures in the flash and allocates all the necessary buffers.

5.5.5.1 Syntax

The readonly parameter is present only if FTL is compiled as not-readonly (5.4.5.4)

If virtual pages are supported (5.4.5.5):

ftl_error_t FTL_Initialize(
 ftl_t *ftl,
 const char *device_name,
 uint32_t *logical_pages,
 uint32_t *virtual_pages,
 uint32_t *logical_page_size,
 uint32_t *virtual_page_size,
 int readonly
);

If virtual pages are not supported (5.4.5.5):

ftl_error_t FTL_Initialize(
 ftl_t *ftl,
 const char *device_name,
 uint32_t *logical_pages,
 uint32_t *logical_page_size,
 int readonly
);

5.5.5.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

device_name NAND flash device name

Specifies NAND flash device name as it is registered to Device Manager.

logical_pages Number of logical pages

The FTL returns number of logical pages available to the user if initialization was
successful.

virtual_pages Number of virtual pages

The FTL returns number of virtual pages available to the user if initialization was
successful.

logical_page_size Logical page size

The FTL returns logical page size if initialization was successful.

virtual_page_size Virtual page size

The FTL returns virtual page size if initialization was successful.

5.5.5.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

Page 56 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 57

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.6 FTL_ReadLog

This function is used to read logical page. The function expects the data buffer to be at least the size indic-
ated by FTL_Initialize function (5.5.5).

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.6.1 Syntax

ftl_error_t FTL_ReadLog(
 ftl_t *ftl,
 uint32_t logical_page_number,
 uint8_t *data
);

5.5.6.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

logical_page_number Logical page number

Specifies logical page number to be read

data Data buffer

Specifies buffer to store read data to. The function assumes that the buffer is
large enough to fit one logical page.

5.5.6.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

Page 58 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.7 FTL_ReadVirt

This function is used to read virtual page. The function expects the data buffer to be at least the size indicated
by FTL_Initialize function (5.5.5).

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.7.1 Syntax

ftl_error_t FTL_ReadVirt(
 ftl_t *ftl,
 uint32_t virtual_page_number,
 uint8_t *data
);

5.5.7.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

virtual_page_number Virtual page number

Specifies virtual page number to read.

data Data buffer

Specifies buffer to store read data to. The function assumes that the buffer is
large enough to fit one virtual page.

5.5.7.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 59

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.8 FTL_Trim

This function marks specified pages as no longer used by the user.

In order to keep the highest write performance possible, it is required to mark pages as no longer needed. If
page is trimmed, its content will not be copied by internal FTL engine when performing certain operations,
such as reclaiming new data blocks for data writes.

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.8.1 Syntax

ftl_error_t FTL_Trim(
 ftl_t *ftl,
 uint32_t logical_page_number_start,
 uint32_t logical_page_number_stop
);

5.5.8.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

logical_page_number_start First number of logical pages range

Specifies the first page in a range of pages to be trimmed.

logical_page_number_stop Last number of logical pages range

Specifies the last page in a range of pages to be trimmed.

5.5.8.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

Page 60 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.9 FTL_VerifyWritesEnable

This function enables automatic verification for all writes to the flash device. By default the verification is on.
If verification is on, after every flash write, the FTL reads back the written data and verifies if data matches.
The UBI_VerifyWritesEnable (4.6.17) is also called with the same value of enable parameter.

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.9.1 Syntax

ftl_error_t FTL_VerifyWritesEnable(
 ftl_t *ftl,
 int enable
);

5.5.9.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

enable Enable writes verification

If non-zero, writes verification is enabled.

5.5.9.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 61

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.10 FTL_WriteLog

This function is used to write logical page. The function expects the data buffer to be at least the size indic-
ated by FTL_Initialize function (5.5.5).

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.10.1 Syntax

ftl_error_t FTL_WriteLog(
 ftl_t *ftl,
 uint32_t logical_page_number,
 const uint8_t *data
);

5.5.10.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

logical_page_number Logical page number

Specifies logical page number to write.

data Data buffer

Specifies buffer with data to be written. The function assumes that the buffer is of
size equal to at least one logical page.

5.5.10.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

Page 62 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.5.11 FTL_WriteVirt

This function is used to write virtual page. The function expects the data buffer to be at least the size indic-
ated by FTL_Initialize function (5.5.5).

FTL_Initialize (5.5.5) must be successfully called prior to calling this function.

5.5.11.1 Syntax

ftl_error_t FTL_WriteVirt(
 ftl_t *ftl,
 uint32_t virtual_page_number,
 const uint8_t *data
);

5.5.11.2 Parameters

ftl FTL handle

Pointer to the structure holding FTL state.

virtual_page_number Virtual page number

Specifies virtual page number to write.

data Data buffer

Specifies buffer with data to be written. The function assumes that the buffer is of
size equal to at least one virtual page.

5.5.11.3 Return value

If the function succeeds the return value is FTL_ERR_SUCCESS.

If the function fails, it returns an error code. Refer to (5.6) for error reference.

SCIOPTA – Flash Translation Layer Page 63

User's Guide and Reference Manual (V1.1)

5 Flash Translation Layer (FTL)

5.6 Errors reference

For list of possible errors refer to header file:

<installation_folder>\sciopta\<version>\include\ftl\ftl.h

Page 64 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6 GDD-compatible FTL SCIOPTA driver

6.1 Introduction

FTL package provides a driver for the FTL, which is compatible with General Device Driver Model in
SCIOPTA.

The driver allows to open, read and write FTL flash memory device. Additional I/O control commands allow
to get flash layout informations, format a flash memory (refer to 5.2.1), change behaviour of FTL background
task (refer to 5.2.3) and retrieve flash health status (refer to 5.2.8).

6.2 Adding driver to the Sciopta project

The driver is located in following file:

<installation_folder>\sciopta\<version>\sfs\ftl\sciopta_ftl.c

Driver process must be defined in SCONF XML configuration file using function name SCP_scioptaftl. Any
process name can be used.

Driver registers itself as a device into Device Manager with name scioptaftl. Device Manager process path
can be configured using UBI options (Fehler: Referenz nicht gefunden).

The priority of FTL driver process must not be higher than the priority of memory device driver defined by
FTL option (refer to 5.4.5.1).

6.3 Message interface reference

SCIOPTA is a message based real-time operating system. Interprocess communication and coordination is
done by messages. Message passing is a very fast, secure, easy to use and a good to debug method.

Messages are the preferred tool for interprocess communication in SCIOPTA. SCIOPTA is specifically de-
signed to have a very high message passing performance. Messages can also be used for interprocess coordin-
ation or synchronization duties to initiate different actions in processes. For this purposes messages can but
do not need to carry data.

A message buffer (the data area of a message) can only be accessed by one process at a time which is the
owner of the message. A process becomes an owner of a message when it allocates the message by the
sc_msgAlloc system call or when it receives the message by the sc_msgRx system call.

Message passing is also possible between processes on different CPUs. In this case specific communication
process types on each side will be needed called SCIOPTA CONNECTOR Processes.

In this chapter all messages supported by SCIOPTA FTL driver are described.

The error code is included in the error member of the sdd_baseMessage_t structure and is used in the reply
message. In the request message error must be set to zero.

The messages are defined in the following header file:

<installation_folder>\sciopta\<version>\include\sdd\sdd.msg

SCIOPTA – Flash Translation Layer Page 65

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.1 SDD_DEV_OPEN / SDD_DEV_OPEN_REPLY

6.3.1.1 Description

This message is used to open FTL memory object for read or read/write.

The user process sends an SDD_DEV_OPEN request message to the controller process of FTL driver object.
The controller process replies with an SDD_DEV_OPEN_REPLY reply message.

6.3.1.2 Message IDs

Request message SDD_DEV_OPEN

Reply message SDD_DEV_OPEN_REPLY

6.3.1.3 sdd_devOpen_t Structure

typedef struct sdd_devOpen_s {
 sdd_baseMessage_t base;
 flags_t flags;
} sdd_devOpen_t;

6.3.1.4 Structure Members

base Driver object descriptor.

Specifies an FTL driver object to be opened.

flags FTL open flags.

Used by the request message and contains BSD conform flags.

O_RDONLY Opens the FTL memory for read only. Cannot be ored with O_WRONLY.

O_WRONLY Opens the FTL memory for write only.

O_RDWR Opens the FTL memory for read and write. Cannot be ored with O_RDONLY or
O_WRONLY.

6.3.1.5 Errors

base.error Error code.

EBUSY FTL driver is already opened.

EROFS FTL is configured as read only.

ENOTSUP Specified flags combination is not supported.

EIO Failed initializing FTL memory.

Page 66 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.2 SDD_DEV_CLOSE / SDD_DEV_CLOSE_REPLY

6.3.2.1 Description

This message is used to close FTL memory object.

The user process sends an SDD_DEV_CLOSE request message to the controller process of FTL driver ob-
ject. The controller process replies with an SDD_DEV_CLOSE_REPLY reply message.

6.3.2.2 Message IDs

Request message SDD_DEV_CLOSE

Reply message SDD_DEV_CLOSE_REPLY

6.3.2.3 sdd_devClose_t Structure

typedef struct sdd_devClose_s {
 sdd_baseMessage_t base;
} sdd_devClose_t;

6.3.2.4 Structure Members

base Driver object descriptor.

Specifies an FTL driver object to be closed.

6.3.2.5 Errors

base.error Error code.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can close it.

SCIOPTA – Flash Translation Layer Page 67

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.3 SDD_DEV_READ / SDD_DEV_READ_REPLY

6.3.3.1 Description

This message is used to read data from FTL memory.

The user process sends an SDD_DEV_READ request message to the reader process of FTL driver object.
The reader process replies with an SDD_DEV_READ_REPLY reply message. The reply contains the read
data.

6.3.3.2 Message IDs

Request message SDD_DEV_READ

Reply message SDD_DEV_READ_REPLY

6.3.3.3 sdd_devRead_t Structure

typedef struct sdd_devRead_s {
 sdd_baseMessage_t base;
 ssize_t size;
 ssize_t curpos;
 uint8_t *outlineBuf;
 uint8_t inlineBuf[1];
} sdd_devRead_t;

6.3.3.4 Structure Members

base Driver object descriptor.

Specifies an FTL driver object to read data from.

size Number of bytes to read.

In the request message contains a number of bytes to read from the FTL
memory.

In the reply message contains a number of bytes actually read.

Size must be a multiple of virtual page size, or if virtual pages are not supported,
a multiple of logical page size.

curpos Not used.

This parameter is not used by FTL driver.

outlineBuf Pointer to a referenced buffer to store data to.

<readptr> Used by the reply message and can contain a pointer to the buffer to put the data
to. Not recommended as pointers should not be used in messages. Rather use in-
lineBuf.

0 The member inlineBuf is used.

inlineBuf In-message buffer to store data to.

Buffer used by the reply message if outlineBuf is not used. The size is variable
and all data will be put into this buffer. The size of allocated SDD_DEV_READ
message must be big enough to fit the requested data size.

Page 68 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.3.5 Errors

base.error Error code.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can read from it.

EINVAL Read size must be a multiple of virtual page size, or message uses inline buffer
and message size is not enough to fit all the requested data.

EPERM FTL driver is opened in write-only mode.

EIO Error reading FTL memory.

SCIOPTA – Flash Translation Layer Page 69

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.4 SDD_DEV_WRITE / SDD_DEV_WRITE_REPLY

6.3.4.1 Description

This message is used to read data from FTL memory.

The user process sends an SDD_DEV_WRITE request message to the writer process of FTL driver object.
The writer process replies with an SDD_DEV_WRITE_REPLY reply message. The reply contains the num-
ber of bytes written.

6.3.4.2 Message IDs

Request message SDD_DEV_WRITE

Reply message SDD_DEV_WRITE_REPLY

6.3.4.3 sdd_devWrite_t Structure

typedef struct sdd_devWrite_s {
 sdd_baseMessage_t base;
 ssize_t size;
 ssize_t curpos;
 const uint8_t *outlineBuf;
 uint8_t inlineBuf[1];
} sdd_devWrite_t;

6.3.4.4 Structure Members

base Driver object descriptor.

Specifies an FTL driver object to write data to.

size Number of bytes to write.

In the request message contains a number of bytes to write to the FTL memory.

In the reply message contains a number of bytes actually written.

Size must be a multiple of virtual page size, or if virtual pages are not supported,
a multiple of logical page size.

curpos Not used.

This parameter is not used by FTL driver.

outlineBuf Pointer to a referenced buffer to get the data from.

<readptr> Used by the request message and can contain a pointer to the buffer to get the
data for writing to the FTL memory. Not recommended as pointers should not be
used in messages. Rather use inlineBuf. Not used by the reply message and can
have any value.

0 The member inlineBuf is used.

inlineBuf In-message buffer containing data to write.

Buffer used by the request message if outlineBuf is not used. The size is vari-
able and all data for writing will be taken from this buffer. The allocated
SDD_DEV_WRITE message must be big enough to contain all the data that are
requested to be written. Not used by the reply message and can have any value.

Page 70 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.4.5 Errors

base.error Error code.

EROFS FTL is compiled as read-only.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can write to it.

EINVAL Write size must be a multiple of virtual page size, or if virtual pages are not sup-
ported, a multiple of logical page size, or message uses inline buffer and message
size is not enough to contain all the data to be written.

EPERM FTL driver is opened in read-only mode.

EIO Error writing FTL memory.

SCIOPTA – Flash Translation Layer Page 71

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.5 SDD_FILE_SEEK / SDD_FILE_SEEK_REPLY

6.3.5.1 Description

This message is used to change current read/write offset of an opened FTL driver.

The user process sends an SDD_FILE_SEEK request message to the controller process of a FTL driver ob-
ject. The controller process replies with an SDD_FILE_SEEK_REPLY reply message.

6.3.5.2 Message IDs

Request message SDD_FILE_SEEK

Reply message SDD_FILE_SEEK_REPLY

6.3.5.3 sdd_fileSeek_t Structure

typedef struct sdd_fileSeek_s {
 sdd_baseMessage_t base;
 off_t offset;
 int whence;
} sdd_fileSeek_t;

6.3.5.4 Structure Members

base FTL driver object descriptor.

Specifies an FTL driver object to change current position of.

offset New offset.

In the request message contains a new FTL memory read/write offset.

In the reply message contains an actual offset from the beginning of an FTL
memory after changing current FTL memory position.

whence Offset origin.

SEEK_CUR offset is relative to the current position.

SEEK_END offset is relative to the end of the FTL memory.

SEEK_SET offset is relative to the beginning of the FTL memory.

6.3.5.5 Errors

base.error Error code.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can seek the current position pointer.

EINVAL Offset origin is invalid, or offset parameter is not a multiple of virtual page size
or if virtual pages are not supported, a multiple of logical page size.

ERANGE Calculated offset is negative, or goes beyond FTL memory size, or new offset is
too large (>2^31-1) to be returned in a reply message.

Page 72 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.6 SDD_FILE_SEEK64 / SDD_FILE_SEEK64_REPLY

6.3.6.1 Description

This message is used to change current read/write offset of an opened FTL driver.

The user process sends an SDD_FILE_SEEK64 request message to the controller process of a FTL driver
object. The controller process replies with an SDD_FILE_SEEK64_REPLY reply message.

6.3.6.2 Message IDs

Request message SDD_FILE_SEEK64

Reply message SDD_FILE_SEEK64_REPLY

6.3.6.3 sdd_fileSeek64_t Structure

typedef struct sdd_fileSeek64_s {
 sdd_baseMessage_t base;
 int64_t offset;
 int whence;
} sdd_fileSeek64_t;

6.3.6.4 Structure Members

base FTL driver object descriptor.

Specifies an FTL driver object to change current position of.

offset New offset.

In the request message contains a new FTL memory read/write offset.

In the reply message contains an actual offset from the beginning of an FTL
memory after changing current FTL memory position.

whence Offset origin.

SEEK_CUR offset is relative to the current position.

SEEK_END offset is relative to the end of the FTL memory.

SEEK_SET offset is relative to the beginning of the FTL memory.

6.3.6.5 Errors

base.error Error code.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can seek the current position pointer.

EINVAL Offset origin is invalid, or offset parameter is not a multiple of virtual page size
or if virtual pages are not supported, a multiple of logical page size.

ERANGE Calculated offset is negative, or goes beyond FTL memory size.

SCIOPTA – Flash Translation Layer Page 73

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.7 SDD_DEV_IOCTL / SDD_DEV_IOCTL_REPLY

6.3.7.1 Description

This message is used to get or set certain properties of an FTL driver.

The user process sends an SDD_DEV_IOCTL request message to the controller process of an FTL driver
object. The controller process replies with an SDD_DEV_IOCTL_REPLY reply message.

6.3.7.2 Message IDs

Request message SDD_DEV_IOCTL

Reply message SDD_DEV_IOCTL_REPLY

6.3.7.3 sdd_devIoctl_t Structure

typedef struct sdd_devIoctl_s {
 sdd_baseMessage_t base;
 unsigned int cmd;
 int ret;
 unsigned long outlineArg;
 unsigned char inlineArg[1];
} sdd_devIoctl_t;

6.3.7.4 Structure Members

base FTL driver object descriptor.

Specifies an FTL driver object.

cmd Object specific command.

Specifies an ioctl command to be executed on the object. Refer to 6.3.7.5 for list
of supported commands.

ret Return value.

Always 0.

outlineArg Command specific argument.

If equals NULL, inlineArg is used.

inlineArg Command specific included argument.

Argument if outlineArg is not used. The size is variable and the whole argument
is included.

6.3.7.5 Commands

6.3.7.5.1 Enable background task

This command is used to enable FTL background task execution. For informations about running FTL back-
ground task, refer to 5.2.3.

Command: FTL_IOCTL_BG_TASK_ENABLE

Data type of argument: Unsigned 32-bit integer. If non-zero, task is enabled. Otherwise task is disabled.

Page 74 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.7.5.2 Change background task interval

This command is used to change the interval the FTL background task is running with. For informations
about running FTL background task, refer to 5.2.3.

Command: FTL_IOCTL_BG_TASK_INTERVAL

Data type of argument: Unsigned 32-bit integer. Time in milliseconds between background task runs.

6.3.7.5.3 Format flash

This commands is used to format FTL memory. Device driver cannot be opened with SDD_DEV_OPEN.

Command: FTL_IOCTL_FORMAT_FLASH

No argument is required for this command.

6.3.7.5.4 Trim pages

This command is used to trim logical pages in FTL memory (refer to 5.2.6 for more informations).

Command: BLKDEVTRIM

Data type of argument: blkdev_trim_t structure.

If virtual pages are supported:

blkdev_trim_t.sector_start – first virtual page to be trimmed

blkdev_trim_t.sector_stop – last virtual page to be trimmed

sector_start and sector_stop+1 must be aligned to number of virtual pages per logical page.

If virtual pages are not supported:

blkdev_trim_t.sector_start – first logical page to be trimmed

blkdev_trim_t.sector_stop – last logical page to be trimmed

6.3.7.5.5 Get flash health status

This commands is used to get flash health status (refer to 5.2.8 for more informations).

Command: FTL_IOCTL_FLASH_HEALTH

Data type of argument: ftl_health_t structure.

6.3.7.5.6 Get memory layout

This command is used to get an FTL memory size, encoded in blkdev_geometry_t or in
blkdev_geometry64_t structure.

Small FTL memories (< 2GB):

cmd: BLKDEVGETPRM

Data type of arg: Pointer to blkdev_geometry_t structure.

Large FTL memories (>= 2GB):

SCIOPTA – Flash Translation Layer Page 75

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

cmd: BLKDEVGETPRM64

Data type of arg: Pointer to blkdev_geometry64_t structure.

6.3.7.5.7 Get erase block size

This commands is used to get erase block size of FTL memory, which is a smallest erasable unit of FTL ab-
straction over flash memory device. In case of FTL this is a logical page size. This command may be used by
filesystem to optimize writes.

Command: BLKDEVGETERASEBLKSIZE

Data type of returned value: 32-bit unsigned integer.

6.3.7.6 Errors

base.error Error code.

EBADF FTL driver is not opened.

EACCES Only process which opened the driver can execute commands.

EINVAL Background task interval must be non-zero, or sector range to trim is not aligned
to logical page.

EBUSY FTL memory cannot be formatted if driver is opened.

EIO Error formatting FTL memory, or error trimming pages, or error getting flash
health status.

ERANGE FTL memory size is larger than 2^31-1 (use BLKDEVGETPRM64 command in-
stead of BLKDEVGETPRM).

Page 76 SCIOPTA – FAT Filesystem

User's Guide and Reference Manual (V1.1)

6 GDD-compatible FTL SCIOPTA driver

6.3.8 SDD_OBJ_RELEASE / SDD_OBJ_RELEASE_REPLY

6.3.8.1 Description

This message is used to release a temporary object representing an FTL driver.

The user process sends an SDD_OBJ_RELEASE request message to the controller process of a FTL driver
object. The controller process replies with an SDD_OBJ_RELEASE_REPLY reply message.

6.3.8.2 Message IDs

Request message SDD_OBJ_RELEASE

Reply message SDD_OBJ_RELEASE_REPLY

6.3.8.3 sdd_objRelease_t Structure

typedef struct sdd_objRelease_s {
 sdd_baseMessage_t base;
} sdd_objRelease_t;

6.3.8.4 Structure Members

base FTL driver object descriptor.

In request message this field contains a descriptor of an FTL driver object to be
released.

6.3.8.5 Errors

No errors returned.

SCIOPTA – Flash Translation Layer Page 77

User's Guide and Reference Manual (V1.1)

7 Using NOR flash memories with FTL

7 Using NOR flash memories with FTL

FTL was designed to work with NAND flash. However it is possible to use NOR flash if a NAND emulation
layer is created on top of a NOR flash driver.

NAND emulation layer is simply a SCIOPTA GDD compatible driver, which follows the same requirements
as NAND driver must follow to able to be used with FTL. Please refer to 4.2 for details about these require-
ments.

NAND and NOR flashes are divided into erasable units called blocks.

Each block (i.e. 128KB) in NAND memory is divided into physical pages (i.e. 2KB), which can also be di-
vided into smaller chunks called virtual page (i.e. 512B). Each physical page has got an additional area called
“spare” area. This area is used by FTL to store some additional informations and also is used by the NAND
device or memory controller to store a CRC data for physical/virtual page. The FTL expects the memory
device driver to take care about calculating CRC and storing it into spare area. The FTL requires access to 12
bytes of spare area per each physical page (ioctl commands 4.2.3.12 and 4.2.3.13). The flash memory driver
should also take care about calculating CRC for this data.

NOR flash normally does not have the spare area. This means, that each block of NOR flash must be divided
into physical pages and spare areas per each physical page. It is up to the NAND emulation layer to decide
how block is divided.

SCIOPTA – Flash Translation Layer Page 79

User's Guide and Reference Manual (V1.1)

8 Manual versions

8 Manual versions

8.1 Manual version 1.2

• Chapter 4.6.7 - Added UBI_GetPhyPageStatus function

• Chapter 4.6.11 - Added UBI_GetVirtPageStatus function

• Chapter 4.6.14.2 - Added read_twice parameter

• Chapter 4.6.15.2 - Added read_twice parameter

• Chapter 4.6.16 - Added UBI_VerifyPhyPage function

• Chapter 4.6.18.2 - Added ro_on_error parameter

8.2 Manual version 1.1

• Chapter 4.2.3.2 - Chapter name changed, option name changed

• Chapter 4.2.3.3 - “Getting logical block size” chapter added

• Chapter 4.2.3.8 - “Erasing physical block only if dirty” chapter added

• Chapter 4.5.5 - UBI_DEVICE_MANAGER_PATH option removed

• Chapter 4.5.5.2 - “Block erasing policy” chapter added

• Chapter 4.6.17 - writes verification is on by default

• Chapter 5.5.9 - writes verification is on by default

8.3 Manual version 1.0

Initial documentation.

SCIOPTA – Flash Translation Layer Page 81

User's Guide and Reference Manual (V1.1)

9 Index

9 Index

SCIOPTA – Flash Translation Layer Page 83

User's Guide and Reference Manual (V1.1)

	1 Table of Contents
	2 SCIOPTA Real-Time Operating System
	2.1 Introduction
	2.2 CPU Family
	2.3 About This Manual

	3 Introduction
	4 Unified Block Index (UBI)
	4.1 Introduction
	4.2 Requirements for NAND flash driver
	4.2.1 Introduction
	4.2.2 Reading data and spare area
	4.2.3 Ioctl commands
	4.2.3.1 Getting number of physical blocks
	4.2.3.2 Getting physical block size
	4.2.3.3 Getting logical block size
	4.2.3.4 Getting physical page size
	4.2.3.5 Getting virtual page size
	4.2.3.6 Getting spare area size
	4.2.3.7 Erasing physical block
	4.2.3.8 Erasing physical block only if dirty (optional)
	4.2.3.9 Testing for bad physical block
	4.2.3.10 Marking physical block as bad
	4.2.3.11 Testing all physical blocks for bad block marks
	4.2.3.12 Reading spare area
	4.2.3.13 Writing spare area

	4.3 Using UBI
	4.3.1 Formatting flash
	4.3.2 Initializing UBI
	4.3.3 Getting flash parameters
	4.3.4 Running UBI background task
	4.3.5 Writing flash pages
	4.3.6 Reading flash pages
	4.3.7 Erasing logical blocks
	4.3.8 Enabling writes verification
	4.3.9 Bitflips
	4.3.10 Getting and interpreting flash health

	4.4 Power Loss Recovery
	4.5 Configuration
	4.5.1 Introduction
	4.5.2 Configuring UBI for flash device
	4.5.2.1 Choosing root area size
	4.5.2.2 Choosing free blocks percentage

	4.5.3 Configuring for minimal RAM memory usage
	4.5.4 Configuring for maximum performance
	4.5.5 Options reference
	4.5.5.1 Flash memory layout
	4.5.5.2 Block erasing policy
	4.5.5.3 Wear-leveling
	4.5.5.4 Caching
	4.5.5.5 Read-only
	4.5.5.6 Support for virtual pages
	4.5.5.7 Trap interface
	4.5.5.8 Debug log

	4.6 Function interface reference
	4.6.1 UBI_Background
	4.6.1.1 Syntax
	4.6.1.2 Parameters
	4.6.1.3 Return value

	4.6.2 UBI_Deinitialize
	4.6.2.1 Syntax
	4.6.2.2 Parameters
	4.6.2.3 Return value

	4.6.3 UBI_EraseBlock
	4.6.3.1 Syntax
	4.6.3.2 Parameters
	4.6.3.3 Return value

	4.6.4 UBI_FormatOnly
	4.6.4.1 Syntax
	4.6.4.2 Parameters
	4.6.4.3 Return value

	4.6.5 UBI_GetBlocksCount
	4.6.5.1 Syntax
	4.6.5.2 Parameters
	4.6.5.3 Return value

	4.6.6 UBI_GetPhyPageSize
	4.6.6.1 Syntax
	4.6.6.2 Parameters
	4.6.6.3 Return value

	4.6.7 UBI_GetPhyPageStatus
	4.6.7.1 Syntax
	4.6.7.2 Parameters
	4.6.7.3 Return value

	4.6.8 UBI_GetPhyPagesPerBlock
	4.6.8.1 Syntax
	4.6.8.2 Parameters
	4.6.8.3 Return value

	4.6.9 UBI_GetSpareSize
	4.6.9.1 Syntax
	4.6.9.2 Parameters
	4.6.9.3 Return value

	4.6.10 UBI_GetVirtPageSize
	4.6.10.1 Syntax
	4.6.10.2 Parameters
	4.6.10.3 Return value

	4.6.11 UBI_GetVirtPageStatus
	4.6.11.1 Syntax
	4.6.11.2 Parameters
	4.6.11.3 Return value

	4.6.12 UBI_Health
	4.6.12.1 Syntax
	4.6.12.2 Parameters
	4.6.12.3 Return value

	4.6.13 UBI_Initialize
	4.6.13.1 Syntax
	4.6.13.2 Parameters
	4.6.13.3 Return value

	4.6.14 UBI_ReadPhyPage
	4.6.14.1 Syntax
	4.6.14.2 Parameters
	4.6.14.3 Return value

	4.6.15 UBI_ReadVirtPage
	4.6.15.1 Syntax
	4.6.15.2 Parameters
	4.6.15.3 Return value

	4.6.16 UBI_VerifyPhyPage
	4.6.16.1 Syntax
	4.6.16.2 Parameters
	4.6.16.3 Return value

	4.6.17 UBI_VerifyWritesEnable
	4.6.17.1 Syntax
	4.6.17.2 Parameters
	4.6.17.3 Return value

	4.6.18 UBI_WritePhyPage
	4.6.18.1 Syntax
	4.6.18.2 Parameters
	4.6.18.3 Return value

	4.6.19 UBI_WriteVirtPage
	4.6.19.1 Syntax
	4.6.19.2 Parameters
	4.6.19.3 Return value

	4.7 Errors reference

	5 Flash Translation Layer (FTL)
	5.1 Introduction
	5.2 Using FTL
	5.2.1 Formatting flash
	5.2.2 Initializing FTL
	5.2.3 Running FTL background task
	5.2.4 Writing flash pages
	5.2.5 Reading flash pages
	5.2.6 Trimming flash pages
	5.2.7 Enabling writes verification
	5.2.8 Getting and interpreting flash health

	5.3 Power Loss Recovery
	5.4 Configuration
	5.4.1 Introduction
	5.4.2 Configuring FTL for flash device
	5.4.3 Configuring for minimal RAM memory usage
	5.4.4 Configuring for maximum performance
	5.4.5 Options reference
	5.4.5.1 Flash device identification
	5.4.5.2 Flash memory layout
	5.4.5.3 Caching
	5.4.5.4 Read-only
	5.4.5.5 Support for virtual pages
	5.4.5.6 Trap interface
	5.4.5.7 Support for more than 128 physical pages per block
	5.4.5.8 Debug log

	5.5 Function interface reference
	5.5.1 FTL_Background
	5.5.1.1 Syntax
	5.5.1.2 Parameters
	5.5.1.3 Return value

	5.5.2 FTL_Deinitialize
	5.5.2.1 Syntax
	5.5.2.2 Parameters
	5.5.2.3 Return value

	5.5.3 FTL_FormatOnly
	5.5.3.1 Syntax
	5.5.3.2 Parameters
	5.5.3.3 Return value

	5.5.4 FTL_Health
	5.5.4.1 Syntax
	5.5.4.2 Parameters
	5.5.4.3 Return value

	5.5.5 FTL_Initialize
	5.5.5.1 Syntax
	5.5.5.2 Parameters
	5.5.5.3 Return value

	5.5.6 FTL_ReadLog
	5.5.6.1 Syntax
	5.5.6.2 Parameters
	5.5.6.3 Return value

	5.5.7 FTL_ReadVirt
	5.5.7.1 Syntax
	5.5.7.2 Parameters
	5.5.7.3 Return value

	5.5.8 FTL_Trim
	5.5.8.1 Syntax
	5.5.8.2 Parameters
	5.5.8.3 Return value

	5.5.9 FTL_VerifyWritesEnable
	5.5.9.1 Syntax
	5.5.9.2 Parameters
	5.5.9.3 Return value

	5.5.10 FTL_WriteLog
	5.5.10.1 Syntax
	5.5.10.2 Parameters
	5.5.10.3 Return value

	5.5.11 FTL_WriteVirt
	5.5.11.1 Syntax
	5.5.11.2 Parameters
	5.5.11.3 Return value

	5.6 Errors reference

	6 GDD-compatible FTL SCIOPTA driver
	6.1 Introduction
	6.2 Adding driver to the Sciopta project
	6.3 Message interface reference
	6.3.1 SDD_DEV_OPEN / SDD_DEV_OPEN_REPLY
	6.3.1.1 Description
	6.3.1.2 Message IDs
	6.3.1.3 sdd_devOpen_t Structure
	6.3.1.4 Structure Members
	6.3.1.5 Errors

	6.3.2 SDD_DEV_CLOSE / SDD_DEV_CLOSE_REPLY
	6.3.2.1 Description
	6.3.2.2 Message IDs
	6.3.2.3 sdd_devClose_t Structure
	6.3.2.4 Structure Members
	6.3.2.5 Errors

	6.3.3 SDD_DEV_READ / SDD_DEV_READ_REPLY
	6.3.3.1 Description
	6.3.3.2 Message IDs
	6.3.3.3 sdd_devRead_t Structure
	6.3.3.4 Structure Members
	6.3.3.5 Errors

	6.3.4 SDD_DEV_WRITE / SDD_DEV_WRITE_REPLY
	6.3.4.1 Description
	6.3.4.2 Message IDs
	6.3.4.3 sdd_devWrite_t Structure
	6.3.4.4 Structure Members
	6.3.4.5 Errors

	6.3.5 SDD_FILE_SEEK / SDD_FILE_SEEK_REPLY
	6.3.5.1 Description
	6.3.5.2 Message IDs
	6.3.5.3 sdd_fileSeek_t Structure
	6.3.5.4 Structure Members
	6.3.5.5 Errors

	6.3.6 SDD_FILE_SEEK64 / SDD_FILE_SEEK64_REPLY
	6.3.6.1 Description
	6.3.6.2 Message IDs
	6.3.6.3 sdd_fileSeek64_t Structure
	6.3.6.4 Structure Members
	6.3.6.5 Errors

	6.3.7 SDD_DEV_IOCTL / SDD_DEV_IOCTL_REPLY
	6.3.7.1 Description
	6.3.7.2 Message IDs
	6.3.7.3 sdd_devIoctl_t Structure
	6.3.7.4 Structure Members
	6.3.7.5 Commands
	6.3.7.5.1 Enable background task
	6.3.7.5.2 Change background task interval
	6.3.7.5.3 Format flash
	6.3.7.5.4 Trim pages
	6.3.7.5.5 Get flash health status
	6.3.7.5.6 Get memory layout
	6.3.7.5.7 Get erase block size

	6.3.7.6 Errors

	6.3.8 SDD_OBJ_RELEASE / SDD_OBJ_RELEASE_REPLY
	6.3.8.1 Description
	6.3.8.2 Message IDs
	6.3.8.3 sdd_objRelease_t Structure
	6.3.8.4 Structure Members
	6.3.8.5 Errors

	7 Using NOR flash memories with FTL
	8 Manual versions
	8.1 Manual version 1.2
	8.2 Manual version 1.1
	8.3 Manual version 1.0

	9 Index

